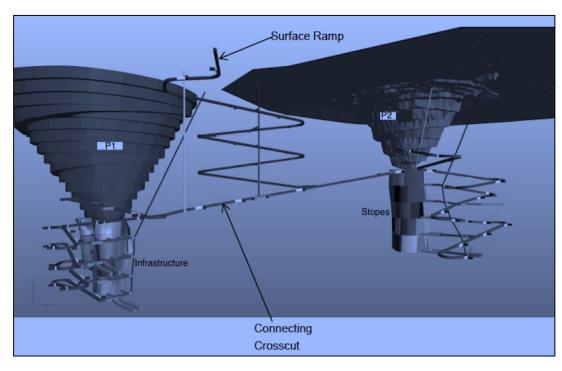


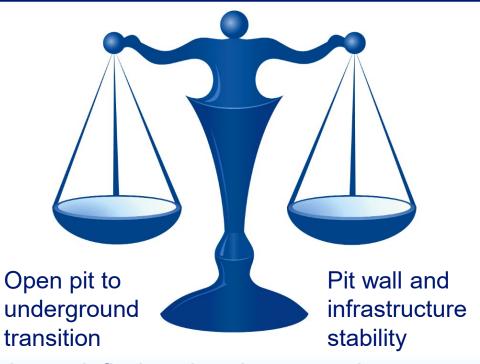
Influence of pit wall stability on underground planning and design when transitioning from open pit to sublevel caving

A Mapuranga & R Mitra

Contents

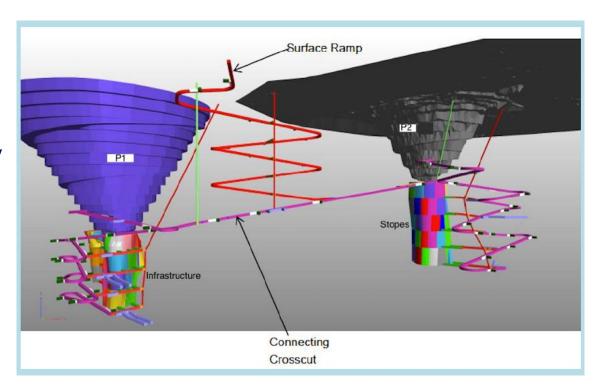

- Introduction
- Stability and transition challenge
- Infrastructure Considerations
- Numerical modelling
- Results and Analysis
- Conclusions and Recommendations

Introduction



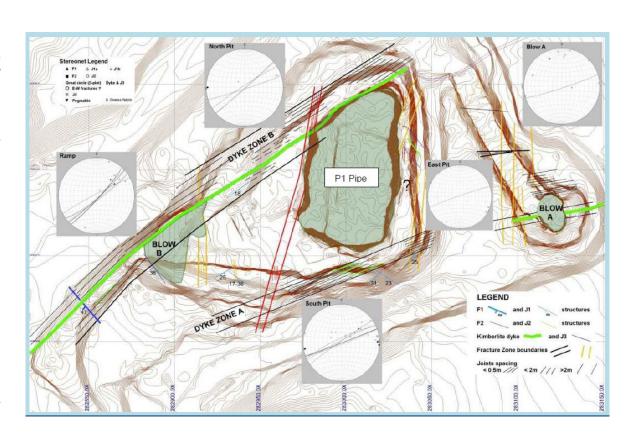
- Beyond economic pit limit, opportunity to transition to underground
- Challenges exist
- Availability of resources/reserves, project economics, geotechnical environment and safety
- Study focuses on the geotechnical environment specifically:
 - Stability/instability of the pit wall
 - Positioning of excavations and infrastructure
 - Role of numerical modelling in assessing stability

Stability and Transition Challenge



- Stability has to be satisfied and at the same time open pit to underground transition has to occur
- Inadequate consideration of geotechnical parameters can cause:
 - Uncontrolled backbreak
 - Failure of pit walls
 - Loss of lives and equipment
 - Excessive dilution
 - Loss of the mine

Case Study Mine

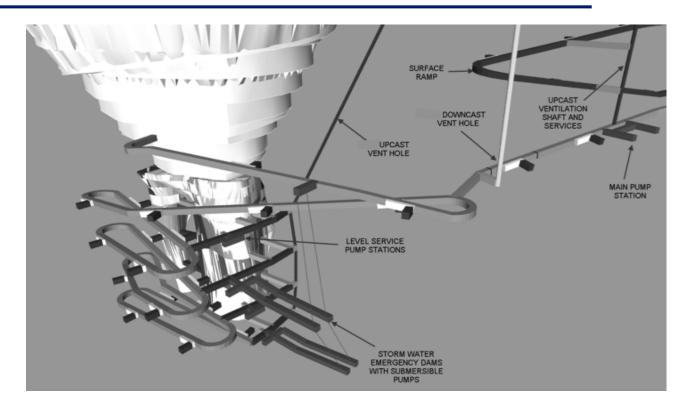

- Located in Africa
- Diamond mine consists of two kimberlite pipes, P1 and P2
- Spaced at 800m apart
- Several other blow pipes in the vicinity
- Initially mined by open pit until they reached their economic limit at 300m
- Kimberlite pipes intruded the granitic gneiss host rock

Case Study Mine – Geology

- Kimberlites are intruded into the Archeanaged Leonean granitic gneisses of the West African craton
- Gneissic fabric is not obvious everywhere, but appears to define areas of higher strain
- From sight observations and geotechnical investigations, the kimberlite dyke zones are the most prominent structures
- Dykes are not continuous, but pinch and swell, bifurcate and form eastward stepping echelon arrays
- Vary from thin stringers (<30cm), separated by the country rock, to 1.5m wide

Why Investigating Transition?

- Factors that affect mine stability:
 - Structural Geology
 - Faults
 - Bedding
 - Joints
 - Foliation
 - Dykes
 - Groundwater
 - Rock mass classification
 - Geometry
 - Alteration
 - Stress conditions
 - Weathering
 - Blasting


Underground Infrastructure

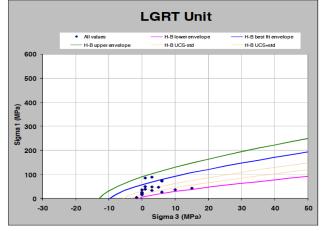
- Considered for the project:
 - Ramp development
 - Connecting drive for the two underground workings
 - Ventilation shafts
 - Underground workshop
 - Drilling water reticulation
 - Dewatering system
 - Electrical system
 - Secondary escape route
 - Level drives

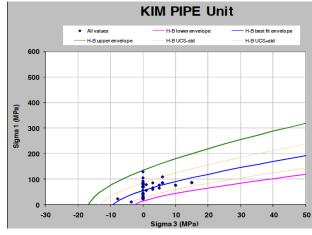
Infrastructure Considerations

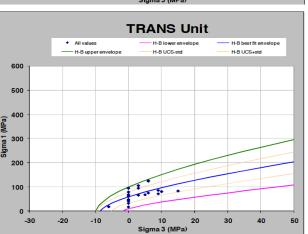
- Infrastructure to be placed in stable ground conditions
- Assess stability risk posed by stress concentrations around pit walls
- Haul roads to be open during initial stages
- Stable position for primary access breakaway
- Mining sequence that does not cause excessive slope failures

Numerical Modelling

- FLAC3D
- Model for predicting the effect of stress changes around the pit wall and underground
- Input parameters include geomechanical properties, initial conditions, boundary conditions, groundwater and mining sequence
- Top down sub level caving through 40m slices
 - √ 4 slices for Pipe A
 - √ 5 slices for Pipe B
- Hoek-brown failure criterion used
- Informed siting of infrastructure


Rock Property Parameters




Rock Unit	Breccia	Granite	Kimberlite Dyke	Leached Granite	Translational Dykes
Density (kg/m³)	2570	2680	2920	2260	2650
UCS (MPa)	64	124	120	24	55
Young Modulus (GPa)	55	65	82	15	32
Base Friction Angle (°)	28	36	30	35	20

H-B upper envelope
H-B uCS-atd

GRT Unit

Kimberlite pipe

Translational dyke

-20

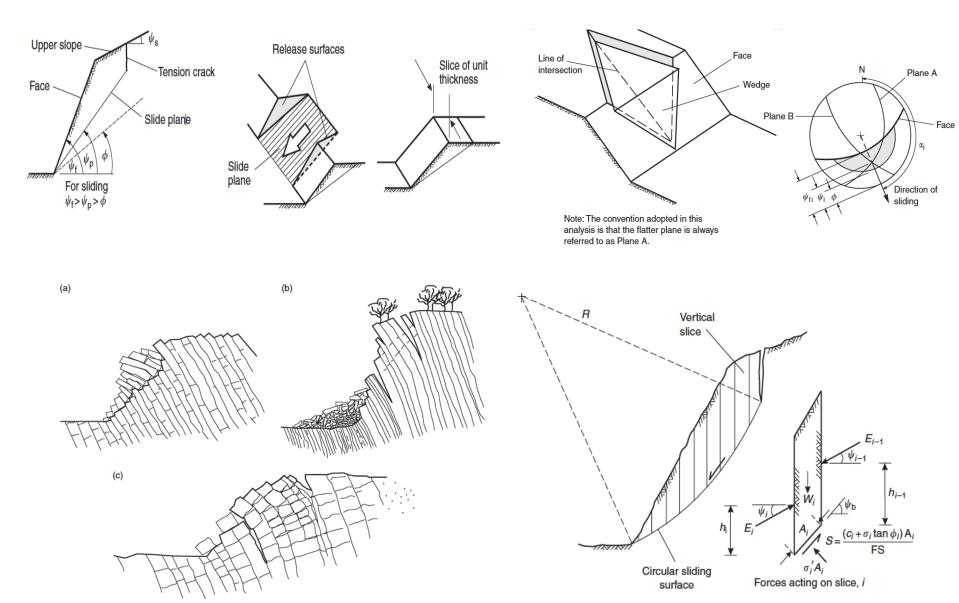
Granite

Leached

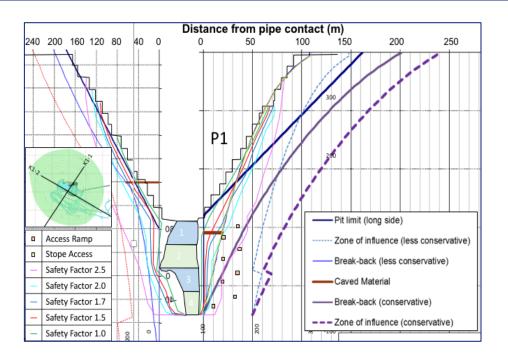
Granite

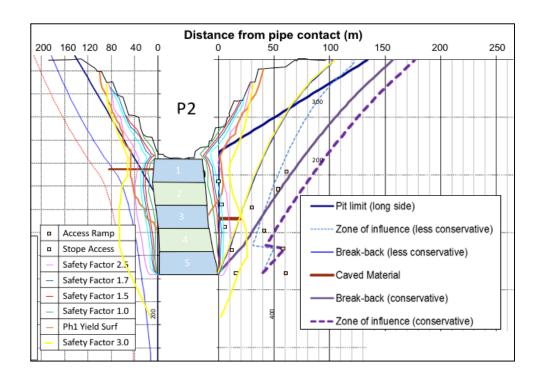
Geotechnical Design Parameters

Rock type	ucs	RMR	GSI	mi	С	Ф	E
					kPa	0	GPa
Breccia	72	45	40	6	262	34	1.9
Granite	133	63	57	16	1004	55	9.5
Kimberlite dyke	120	61	56	6	977	44	4.9
Kimberlite pipe	65	61	56	6	694	40	3
Leached granite	25	48	43	6	184	27	0.5

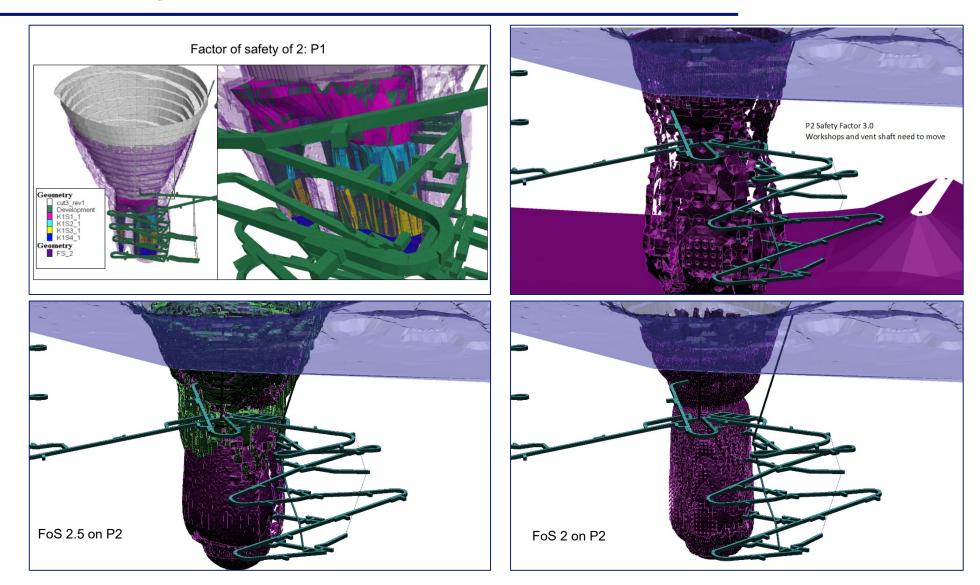

Joint Set Characteristics for the Mine

Set	Dip	Strike	Spacing	Length	Macro planarity	Micro Roughness
			P1	ı		<u> </u>
J1	Shallow	a) SW b)E	2 m - 10 m	>5 m	Wavy	Rough undulating
F2/J2	Sub vertical	N-NNE	0.5m	>5 m	Straight	Rough undulating
					Straight stepped	Smooth undulating,
J3	Sub vertical	ENE	<0.5 m - 2 m	>5 m	at intersections	sometimes slickensided
J4	Sub vertical	NW				
			P2			•
J1	Shallow	a) SW b)SE	>10 m	>5 m	Straight	Rough undulating
					Straight stepped	Smooth undulating,
J3	Sub vertical	ENE	<0.5 m - 2 m	>5 m	at intersections	sometimes slickensided
		I	Dykes	1	1	
		60⊶80∘ anti-			straight, slightly	
SJ1	Moderate Sub vertical	clockwise from J3			curved	Smooth planar
SJ2	Shallow moderate	N			Wavy	Smooth planar
					Straight stepped	Smooth undulating,
J3	Sub vertical	ENE	<0.5 m - 2 m	>5 m	at intersections	sometimes slickensided

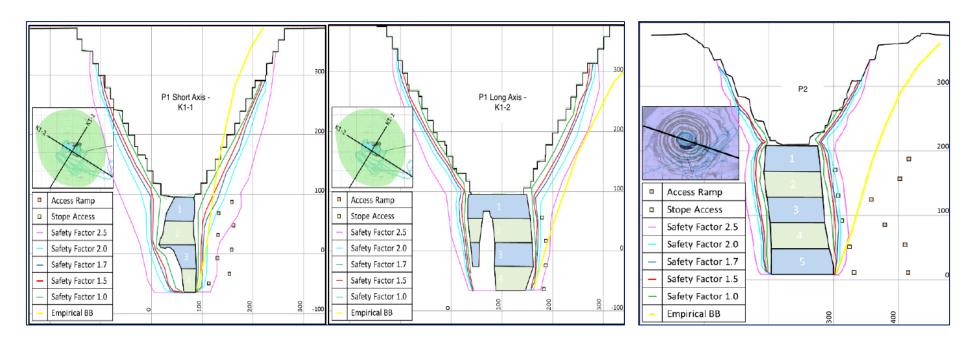

Mechanisms of Slope Failure



Results and Analysis



- Factor of Safety iso-shells
- From the modelling, areas of interest were
 - Pit slope behaviour
 - Interaction of pit and underground mining
 - Zone of geotechnical stability and instability


Factor of Safety Shells

FoS Shells for Pits P1 and P2

- FoS of 2 chosen to ensure critical excavations are outside failure zone
- Signs of pit instability and slope movement were projected when mining second stope
- Faults and dykes adversely affected pit wall stability

Conclusions and Recommendations

- FLAC 3D FoS iso-shell used for design outside expected zone of influence
- Conservative FoS of 2 was chosen to cater for the unknown rock mass behaviour
- New conditions discovered during the project should be recorded and added to the numerical model
- Strong cross-functional approach from both the geotechnical and the mine planning departments
- Effective monitoring system is required in place around the pit wall, to continuously assess and evaluate displacement and deformation as mining progresses

Thank you